24 research outputs found

    Towards Serverless NFV for 5G Media Applications

    Get PDF
    The advent of virtualization and IaaS have revolutionized the telecom industry via SDN/NFV. A new wave of cloud-native PaaS promises to further improve SDN/NFV performance, portability, and cost-efficiency. In this poster, we highlight a work in progress being done in the 5G-MEDIA project [2], which pioneers the application of the serverless paradigm to NFV in the context of media intensive applications in 5G networks. Motivational use cases include tele-immersive gaming, mobile journalism and UHD content distribution. For example, consider a next-gen e-sport, in which bouts between gamers last only a few minutes. FaaS offers a clear cost-efficiency benefit for hosting such applications. An architecture is shown in Fig. 1. It includes i) an Application/Service Development Kit (SDK) to enable access to media applications development tools; ii) a Service Virtualization Platform (SVP) to run the ETSI MANO framework, the Media Service MAPE optimization component and the VIM and WIM plugins to enable NFVIs integration; iii) different NFVIs to execute media-specific VNFs. FaaS VIM is implemented for integration of FaaS with the rest of the MANO stack. It allows mixing FaaS and "regular" VNFs within the same media forwarding graph. For reference implementation, Apache OpenWhisk [1] and Kubernetes are used. The main challenge is extending the programming model to support groups of actions communicating over a network, while retaining the simplicity of FaaS

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    A Methodology for Supersonic Commercial Market Estimation and Environmental Impact Evaluation (Part II)

    Get PDF
    Presented at AIAA Aviation Conference 2020With the increasing research efforts in civil supersonic transport (SST) during the past decade, companies like Boom and Aerion are making the comeback of civil supersonic flight more promising than ever. Both companies believe that substantial demand exists in civil supersonic aviation, and opportunities are present. However, many regulatory hurdles and operational constraints impose strict limitations on supersonic flight and should not be overlooked. In addition, these aircraft are likely to have higher fuel burn per passenger compared to that for similarly-sized subsonic aircraft, and their effect on fleet-level emissions is unknown. In Part I of this two-part study, the research team successfully demonstrated a methodology that employs a bottom-up approach for estimating the future demand for supersonic commercial operation and its associated fuel burn and CO2 emission, using only publicly available subsonic baseline-fleet data. This paper seeks to fill the gaps and assumptions identified in the Part I paper by using robust, non-public data, and provides updated results on market estimation and environmental impact (in terms of both CO2 and NOx) between 2035 and 2050.This project has received funding from the Clean Sky 2 (CS2) Joint Undertaking (JU) under grant agreement No.864521. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 JU

    An Edge-to-Cloud Virtualized Multimedia Service Platform for 5G Networks

    No full text
    The focus of research into 5G networks to date has been largely on the required advances in network architectures, technologies, and infrastructures. Less effort has been put on the applications and services that will make use of and exploit the flexibility of 5G networks built upon the concept of software-defined networking (SDN) and network function virtualization (NFV). Media-based applications are amongst the most demanding services, requiring large bandwidths for high audio-visual quality, low-latency for interactivity, and sufficient infrastructure resources to deliver the computational power for running the media applications in the networked cloud. This paper presents a novel service virtualization platform (SVP), called 5G-MEDIA SVP, which leverages the principles of NFV and SDN to facilitate the development, deployment, and operation of media services on 5G networks. The platform offers an advanced cognitive management environment for the provisioning of network services (NSs) and media-related applications, which directly link their lifecycle management with user experience as well as optimization of infrastructure resource utilization. Another innovation of 5G-MEDIA SVP is the integration of serverless computing with media intensive applications in 5G networks, increasing cost effectiveness of operation and simplifying development and deployment time. The proposed SVP is being validated against three media use cases: 1) immersive virtual reality 3-D gaming application; 2) remote production of broadcast content incorporating user generated contents; and 3) dynamically adaptive content distribution networks for the intelligent distribution of ultrahigh definition content. The preliminary results of the 5G-MEDIA SVP platform evaluation are compared against current practice and show that the proposed platform provides enhanced functionality for the operators and infrastructure owners, while ensuring better NS performance to service providers and end users

    DESIGN OPTIMIZATION AND THE PATH TOWARDS A 2 MW SPALLATION NEUTRON SOURCE*

    No full text
    Abstract The Spallation Neutron Source (SNS) is designed to ultimately reach an average proton beam power of 2 MW for pulsed neutron production. The SNS physics groups analyze the machine performance within the hardware constraints, optimize the accelerator design, and establish the best path towards a 2 MW and higher spallation neutron source
    corecore